| Name :        |  |
|---------------|--|
| Class: 12 MT_ |  |

KW FH GF FH HB JG AW

#### CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2001 AP4

#### YEAR 12 TRIAL HSC

# **MATHEMATICS**

[2/3 UNIT]

Time allowed - 3 hours (plus 5 minutes reading time)

#### **DIRECTIONS TO CANDIDATES:**

- · Attempt ALL questions.
- All questions are of equal value
- · Standard Integrals are provided.
- Approved calculators may be used.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Each question attempted is to be returned on a new page clearly marked Question 1, Question 2, etc on the top of the page.
- Each page must show your class and your name.

Students are advised that this is a school based Trial Examination *only* and cannot in any way guarantee the complete content nor format of the Higher School Certificate Examination.

| QUES | STION 1 Use a new page                                                    | Marks |
|------|---------------------------------------------------------------------------|-------|
| (a)  | Factorise $3x^2 - 2x - 1$ .                                               | 2     |
| (b)  | Solve and graph the solution of $ 2x+1  \le 2$ on a number line           | 2     |
| (c)  | Find the value of $8^{\frac{1}{2}}$ correct to 3 decimal places.          | 2     |
| (d)  | Find the primitive function for $x^{-2} + 6$ .                            | 2     |
| (e)  | Find the exact value of $\tan 60^{\circ} + \tan 150^{\circ}$ .            | 2     |
| (f)  | Solve $\tan \alpha = \sqrt{3}$ for $0^{\circ} \le \alpha \le 360^{\circ}$ | 2     |

## **QUESTION 2**

#### Start a new page

Marks



- (a) Find the gradient of the line AB
- (b) Show that the equation of AB is 3x + 4y 24 = 0
- (c) Calculate the angle  $\theta$  to the nearest degree.
- (d) Given that OC meets AB at right angles, calculate the distance OC. 2
- (e) (i) Show OC has the equation 4x-3y=0
  - (ii) Find the distance of BC.
  - (iii) Show that  $\frac{OC}{BC} = \frac{OA}{OB}$ .

# QUESTION 3 Use a new page Marks

- (a) Obtain all solutions to  $9^x 28 \times 3^x + 27 = 0$ .
- (b) Find the indefinite integrals for:

(i) 
$$\int \frac{4x}{x^2 - 7} dx$$

(ii) 
$$\int \frac{3x^2 - 7x + 2}{x^2} dx$$
 2

(c) Evaluate  $\int_0^1 2x e^{(3x^2-5)} dx$ 

Give your answer in scientific notation to 3 significant figures.

(d) The diagram shows the face of a vertical cliff. The distances  $d_1 \Longrightarrow d_2$  are given in the table.



2

3

| $d_1$ |    | 1   |     | i  | ( )  |
|-------|----|-----|-----|----|------|
| 15    | 14 | 5.4 | 8.8 | 15 | 14.4 |

- (i) Find an estimate for the area of the cliff face using the trapezoidal rule. Give your answer to the nearest square metre.
- (ii) Is the area greater than or less than the actual area of the cliff?

  Justify your answer.

  2

### **QUESTION 4**

# Start a new page

Marks

- For the quadratic function  $f(x) = Ax^2 7x + 3$ , f(2) = -3. (a)
  - (i) Find the value of A.

1

(ii) If the two roots of the equation f(x) = 0 are  $\alpha$  and  $\beta$ ,

Find the value of  $\alpha^2$  and  $\beta^2$ 

2

- The unit circle shown has the equation  $x^2 + y^2 = 1$ (b)
  - Write the co-ordinates of the point P (i) In terms of the angle  $\theta$ .



Explain why  $\sin^2 \theta + \cos^2 \theta = 1$ (ii)



If  $\sin \theta = \frac{8}{17}$  find 2 possible (iii)

values for  $\cos \theta$ 



The figure shows a circle, centre O. (c)

> AX and BX are tangents to the circle from the external point X.

OA and OB are the radii at the points of contact of the tangents. 0

 $AX \perp OA$  and  $BX \perp OB$ 

- By considering the triangles AOX and BOX prove that AX = BX. 3 (i)
- If AO = r and  $\angle AOX = \theta$ , (ii) show that the area of OAXB =  $r^2 \tan \theta$ .

# QUESTION 5 Start a new page Marks

- (a) In a geometric sequence  $T_1 = 27$  and  $T_4 = 1$ 
  - (i) Find the common ratio, r.
  - (ii) Find the limiting sum.
- (b) Consider the series  $97 + 91 + 85 + $79 + \dots$ 
  - (i) Find the common difference, d
  - (ii) Find the largest n such that  $S_n$  (0)
- (c) The point P moves such that its distance from the point (0,2) is the same as the distance from the line y = -2.
   What is the equation of the line?
- (d) The graph shows y' and y'' for the function y = f(x).



Sketch the graph of y = f(x) clearly showing the x values of any turning points and points of inflexion.

1

QUESTION 6 Start a new page Marks

(a)  $\frac{\frac{5}{9}}{R}$  R  $\frac{4}{9}$  W  $\frac{2}{3}$  R  $\frac{2}{3}$  R  $\frac{2}{3}$  W  $\frac{1}{3}$  W

Some red and white balls are placed in a bag.

The tree diagram shows the probabilities relating to the situation of two balls from the bag, without replacement.

Find (i) the probability that the two balls are different colours.

- (ii) the probability that the two balls are the same colour.. 1
- (iii) the number of red balls and white balls in the bag. 1
- (b) For the function  $f(x) = 2x e^{0.5x}$ 
  - (i) Show it has a minimum at x = -2 and state the minimum value 6 at this point.
  - (ii) State the region(s) for where the curve is increasing. 2

(b)

**QUESTION 7** 

Start a new page

Marks

2

1

(a) The graph shows y = f(x) for  $0 \le x \le k$ 



The value of  $\int_0^k f(x) dx$  is known to be 3.5 units

If A = 5 and B = 4 find the area C.



The curve represented on the graph is an ellipse which has the equation  $4x^2 + 9y^2 = 36$ 

- (i) Show that the curve crosses the x axis at (3,0) and (-3,0)
- (ii) Obtain the volume generated when the curve is rotated around the x axis.
- Michael has decided to invest in a superannuation fund. He calculates that he will need \$1 000 000 if he is to retire in 20 years time and maintain his present lifestyle. The superannuation fund pays 12% per annum interest on his investments.
  - (i) Michael invests \$P at the beginning of each year. Show that at the end of the first year his investment is worth \$P(1.12).
  - (ii) Show that at the end of the third year his investment is given by the expression  $P(1.12)(1.12^2 + 1.12 + 1)$ .
  - (iii) Find a similar expression for his investment after 20 years and hence find the value of P needed to realise the total of \$1 000 000 required for his retirement.

| QUES | TION 8 | Start a new page                                                                                                                                                                   | Marks      |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)  | (i)    | Show that the discriminant for the quadratic equation $kx^2 + (k+3)x - 1 = 0$ is given by $k^2 + 10k + 9$ .<br>Hence find for what value of $k$ does the equation have real roots. | 3          |
|      | (iii)  | For what value of $k$ is the quadratic expression $kx^2 + (k+3)x - 1 = 0$ positive definite?                                                                                       | <b>9</b> 2 |
| (b)  | (i)    | Show that $\frac{d}{dx}(x \ln x - x) = \ln x$                                                                                                                                      | 2          |
|      | (ii)   | Hence evaluate $\int_1^{e^2} \ln x  dx$ . Leave your answer in exact form.                                                                                                         | 2          |
| (c)  | Find 1 | the equation of the tangent to the curve $y = \ln(\sqrt{x})$ when $x = e$ .                                                                                                        | 3          |
| QUE  | STION  | 9 Start a new page                                                                                                                                                                 | Marks      |
| (a)  | For th | e parabola $8x = y^2$ find  The Vertex                                                                                                                                             | 1          |
|      | (ii)   | The Focus                                                                                                                                                                          | 1          |
|      | (iii)  | The Directrix                                                                                                                                                                      | 1          |
| (b)  | If log | $_x a = 3.6$ and $\log_x b = 2$ find:                                                                                                                                              |            |
| v.   | (i)    | $\log_x \sqrt[3]{a}$                                                                                                                                                               | 1          |
|      | (ii)   | $\log_x ab$                                                                                                                                                                        | 1          |
|      | (iii)  | $\log_x \frac{a}{b}$                                                                                                                                                               | 1          |
| (c)  | The h  | hiagram represents a right conical container, with radius $r$ .  height of the container = $kr$ . Also the sum  he radius and the height = $1$ m.                                  |            |
|      | (i)    | Show that the volume of the cone is given by $V = \frac{\pi}{3} \cdot \frac{k}{(1+k)^3}$                                                                                           | 2          |

- (ii) Find the value of k which maximises the volume of the cone.
- (iii) Calculate the maximum volume.

1

#### **QUESTION 10**

#### Start a new page

Marks

(a) Sketch  $y = 2\sin x - 1$  for  $0^{\circ} \le x \le 180^{\circ}$ 

3

- (b) To comply with regulations, a factory must make hourly measurements of the quality of fumes produced by its furnaces. The measured quantity of fumes, L litres, that has been produced by each of its furnaces t hours after the furnace has been lit is given by the expression  $L = t + 1.2^{t}$ .
  - (i) A furnace is lit at 6 a.m. What is the measured quantity of fumes from the furnace after one hour?

1

- (ii) A second furnace is lit at 7 a.m. Show that the total measured quantity of furnes from the two furnaces by 8.45 a.m. is 5.64 litres. 1
- (iii) At the beginning of each hour of the day, an additional furnace is lit.

  Write an expression to find the total measured quantity of furnes from the furnaces after *n* hours, where *n* is a positive whole number. 2
- (iv) On a given day, the first furnace is lit at 6 a.m. and an additional furnace is lit every hour, until the last furnace is lit at 4 p.m.

  Using the formulas for the sum of an arithmetic series and the sum of a geometric series, calculate the total measured quantity of fumes produced by 5 p.m.

2

A, B and C are the vertices of an isosceles triangle with a right angle at C. D is a point such that DB = AB and angle DBA is acute DC | AB.

3



Find the size of  $\angle DBC$ 

QUESTIONS CTHS TRIAL MATHEMATICS SOLUTIONS 2001

| CTHS TRIAL MATHE                                                                                                            | MARKING QUIDELINES                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) (3 x + 1) (x -1)                                                                                                         | 2                                                                                                                                                      |
| x 2   -2 x < 1 -2 x < 1                                                                                                     | 2-162 = -262x +162<br>2-162 = -3 < 2x < 1<br>-3 < 2x < 1<br>-12 < x < 5                                                                                |
| -12 0 2                                                                                                                     | 2                                                                                                                                                      |
| B 8 = V8 = 2.828                                                                                                            | I for correct to 3 dp.                                                                                                                                 |
| $\int x^{-2} + b  dx = - x  + bx + c$                                                                                       | and the second section is the second section of the second section of the second section of the second section of the second section section sections. |
| = -1 + bx + c                                                                                                               | 2                                                                                                                                                      |
| 6) $tam bo = \sqrt{3}$<br>$tam 100 = -\frac{1}{\sqrt{3}}$<br>$\sqrt{3} - \frac{1}{\sqrt{3}}$                                | I for exact ratio  I for simplifying.                                                                                                                  |
| $\frac{3-1}{\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$                                                           |                                                                                                                                                        |
| f) $tan x = 53$ $ton b0 = 55$ $x = 60^{\circ} \text{ or } 180^{\circ} + 60^{\circ}$ $x = 60^{\circ} \text{ g } 240^{\circ}$ | 1 for 60° 1 for 240° 12                                                                                                                                |

| Trial HSC Solutions 2001 Mathematics Page 2 Solutions Marks/Comments                                                                                                                                        |                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|                                                                                                                                                                                                             | Marks/Comments |  |
| $2(a) \qquad m = \frac{6-0}{0-8}$                                                                                                                                                                           | 1              |  |
| $= -\frac{3}{4}$                                                                                                                                                                                            |                |  |
| (h) y intercept = 6 or $y-0=\frac{3}{4}(x-8)$<br>$y=-\frac{3}{4}x+6$ $y=\frac{3}{4}x-6$<br>4y=-3x+24 $3x+4y-24=0$                                                                                           | 2.             |  |
| (c) $\Theta = \underline{IABO}$ or inclination = $\tan^{-1}(-\frac{3}{4})$<br>$\therefore \tan \theta = \frac{6}{8}$ = 143°<br>$\theta = 37^{\circ}$ $\theta = 180^{\circ} - 143^{\circ}$<br>$= 37^{\circ}$ | 2              |  |
| (d) $d = \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$                                                                                                                                                          |                |  |
| $= \left  \frac{0 + 0 - 24}{\sqrt{3^2 + 4^2}} \right $ $= \left  \frac{-24}{5} \right  = 4.8$                                                                                                               | 2.             |  |
| e) (1) OC_h_AB :: gradient = $\frac{4}{3}$ y intercept is 0  :: $y = \frac{4}{3}x$ $4x - 3y = 0$                                                                                                            | 2              |  |
| न्.                                                                                                                                                                                                         |                |  |

| Trial HSC Solutions 2001 Mathema                                                                                                                                                                                                        |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Solutions                                                                                                                                                                                                                               | Marks/Comments |
| $2(e)(11) 4x - 3y = 0 	 OR. 	 OB = 8$ $y = \frac{4}{3}x 	 OC = 4.8$ Sub into $3x + 4y - 24 = 0$ $BC^2 = OB^2 - OC^2$ $3x + 4(\frac{4}{3}x) - 24 = 0 	 = 8^2 - 4.8^2$ $\frac{25x}{3} = 24 	 BC^2 = 40.96$ $x = \frac{72}{25} 	 BC = 6.4$ | 2.             |
| $d = \sqrt{8 - \frac{72}{25}}^{2} + (0 - \frac{96}{25})^{2}$ $BC = 6.4$ $(111) \frac{OC}{BC} = \frac{4.8}{6.4} = \frac{3}{4}$ $\frac{OA}{OB} = \frac{6}{8} = \frac{3}{4}$ $\frac{OC}{BC} = \frac{OA}{OB}$                               |                |
|                                                                                                                                                                                                                                         |                |

| Trial HSC solutions 2001 Mathematics 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks/Comments                 |
| $93a)1$ et $u = 3^{x}$<br>$u^{2} - 28u + 27 = (u - 27)(u - 1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| when $3^{1}=27$ >1=3 OR<br>$3^{1}=1$ >1=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 for both solutions in        |
| b) i $\int \frac{4x}{x^2-7} dx = 2 \ln(x^2-7) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| $\int_{-\infty}^{\infty} \left( \frac{3x^2 - 7x + 2}{x^2} dx \right) dx = \left( \frac{3 - \frac{7}{x} + \frac{2}{x^2}}{x^2} \right) dx$ $= 3x - \frac{7}{x} + \frac{2}{x^2} + \frac{2}{x^2} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lie 1                          |
| c) $\left( \int_{0}^{1} 2x e^{(3x^{2}-5)} dx = \left( \int_{0}^{1} e^{3x^{2}-5} \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - NASON                        |
| $= \frac{1}{3}e^{2} - \frac{1}{3}e^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                              |
| = 0.0428657<br>⇒ 4.29 × 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| A = 12[d1+d2]+12[d2+d3]+12[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16+a5]+10[d5+d4]               |
| a) ( ) A = 10 ( \dot + d + d + \dot + | I cor equivalent<br>expression |
| = 508 m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Whess than actual area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| of d, d, d, d, d, d, d, d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| areas of the clitt are not included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                             |

| Trial HSC Solutions 2001 Mather                                                                                                   | matics Page 5                            |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Solutions                                                                                                                         | Marks/Comments                           |
| $Q4(a)(1)$ $A(2)^2 - 7(2) + 3 = -3$                                                                                               |                                          |
| 4A - 11 = -3                                                                                                                      | 1                                        |
| 4A = 8                                                                                                                            | <b>'</b>                                 |
| A = 2                                                                                                                             |                                          |
| $(11) 2x^2 - 7x + 3 = 0$                                                                                                          | 10 2 2 .                                 |
| $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$                                                                          | If $\chi^{2}+\beta^{2}$ is               |
| $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= \left(-\frac{b}{\alpha}\right)^{2} - \frac{c}{\alpha} + 2\beta$ | using the wrong value of A from (1) give |
|                                                                                                                                   | of A from (1) give                       |
| $= \left(\frac{7}{2}\right)^2 - \frac{3}{2} \times 2$                                                                             | full marks.                              |
| = 49 - 3                                                                                                                          | 2                                        |
| $= \frac{49}{4} - 3$ $= \frac{43}{4} = \frac{37}{4} = 9\frac{1}{4}$                                                               | ~.                                       |
| OR BY FINDING ROOTS $(3 \text{ and } \frac{1}{2})$                                                                                |                                          |
| and squaring.                                                                                                                     |                                          |
| $(b)$ (1) $\cos\Theta = \frac{x}{7}$ $\sin\Theta = \frac{y}{7}$                                                                   |                                          |
| x= cos = sin =.                                                                                                                   |                                          |
| P(cose, sine)                                                                                                                     |                                          |
| (11) $x^2 + y^2 = 1$ for all points on eincle.                                                                                    |                                          |
| P(ws0, sin0) lies on circle.                                                                                                      | •                                        |
| $\frac{1}{2} \cos^2 \Theta + \sin^2 \Theta = 1 \qquad \text{OR} $ $\sin^2 \Theta + \cos^2 \Theta = 1 \qquad \text{PYTHAGORAS}$    |                                          |
| $Sin^2\Theta + cos^2\Theta =   PYTHAGORAS THM.$                                                                                   |                                          |
| $(111)  \cos^2\Theta + \left(\frac{8}{17}\right)^2 = 1$                                                                           | I for working                            |
| $\cos^2\theta + \frac{64}{289} = 1$                                                                                               | i for answer                             |
| $\cos^2\Theta = 1 - \frac{64}{289} = \frac{225}{289}$                                                                             | 2                                        |
| $\cos\Theta = \pm \frac{15}{17}$                                                                                                  |                                          |
| 17                                                                                                                                |                                          |

| Trial HSC solutions 20                                                                                                                                                                      | 01 Mathematics Poge 7                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Solutions                                                                                                                                                                                   | Marks/Comments                                                             |
| $\frac{Q5a}{1}$ 1) $T_1 = a = 27$ , $T_4 = ar^3 = 1$                                                                                                                                        |                                                                            |
| ii) a= 27 r= = = Soo                                                                                                                                                                        | 1                                                                          |
| $S_{\infty} = \frac{27}{2/3}$                                                                                                                                                               | 1                                                                          |
| = 40 ½                                                                                                                                                                                      |                                                                            |
| b) i) d= -6                                                                                                                                                                                 |                                                                            |
| i) Sn = 1 (2a +(n-1)d)                                                                                                                                                                      |                                                                            |
| $0 = \frac{N}{2} \left( 194 - 6h - 6 \right)$                                                                                                                                               | \                                                                          |
| $0 = 94n - 3n^2$ gives<br>$n = 31\frac{1}{3}$ $n(94 - 31n^2)$ When $n = 31$ is largest $n$ for<br>which $5n > 0$                                                                            |                                                                            |
| c) Let $D = (x, -2)$ $S = (0, 2)$ and $PS = PD^2$ $(x-0)^2 + (y-2)^2 = (x-x)^2 + (y-2)^2$ $x^2 + y^2 + 4y + 4 = 0 + y^2 + 4y + 4$ $x^2 = 8y$ $\therefore   occos of P is y = \frac{x^2}{8}$ | for distance<br>statement.  I for Algebra<br>manipolation  I for Equation. |
|                                                                                                                                                                                             |                                                                            |

|      | Trial HSC solutions 200 | 1 Mathematics Page 8 |
|------|-------------------------|----------------------|
|      | Solutions               | Marks/Comments       |
| 5 1) |                         |                      |
|      |                         |                      |

| Trial HSC solu                                                     | tions 2001 Mathematics Page 9 |
|--------------------------------------------------------------------|-------------------------------|
| Solutions                                                          | Marks/Comments                |
| ba))P(RU) = = = = = = = = = = = = = = = = = = =                    |                               |
| $P(2 \text{ different}) = \frac{24}{45} = \frac{8}{1}$             | 5 1                           |
| (11) R= 6 W=4<br>-(11) P(2 same) = 1 - P(diff) = 1-                | -24 = 21 = 75 D               |
| (b) for = 2xe 0.5x                                                 |                               |
| (i) $f'(14) = 2.2^{0.5x} + 2xx$ $= 2e^{0.5x} + xe^{0}$             |                               |
| For Stationary bounds & (x<br>e0.5x (2+x) =0                       | 1)=0                          |
| 2+12 =0                                                            |                               |
| Test NATURE at x=-2  -2.1  -1.9  x -2 -2 -2  8'(x) -0.035 0 +0.039 |                               |
| $f(-2) = 2(-2)e^{0.51}$                                            |                               |
| 4e-1                                                               | _1                            |
| (ii) Increasing function (1)                                       | (x) 70                        |
| 80.5x 30 Ax                                                        |                               |
| 2C3-5                                                              | 1                             |
|                                                                    |                               |

| Trial HSC solutions 2001 Mathematics Page 10                                                                                                                                                                                                                                   |                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Solutions                                                                                                                                                                                                                                                                      | Marks/Comments                            |  |
| 7 a) 3.5 = 5-4+C                                                                                                                                                                                                                                                               |                                           |  |
| b) 1) $4x^{2} + 9y^{2} = 36$<br>$4x^{2} = 36$<br>$x^{2} = 9$<br>$x = \pm 3$ as req <sup>2</sup>                                                                                                                                                                                | or straight substitution of points        |  |
| ii) $V = \pi \int_{-3}^{3} y^{2} dx$ $= \pi \int_{-3}^{3} 4 - \frac{4}{9}x^{2} dx$ $= \pi \left[ \frac{4}{2}x - \frac{4}{2}x^{2} \right]_{-3}^{3}$ $= \pi \left[ \frac{4}{2}x - \frac{4}{2}x^{2} \right]_{-3}^{3}$ $= \pi \left[ \frac{12}{6}\pi \text{ expire units} \right]$ | for manipulation of yeard to correct form |  |
| c) i) $A_1 = P_{+}(P_{+}0.i2) = P + 0.12P$<br>= $P(1+0.i2)$<br>= $P(1.12)$<br>ii) $A_2 = (A_1 + P)1.i2$<br>$A_3 = (A_2 + P)1.i2$<br>$A_3 = P(1.i2)^3 + P(1.i2)^2 + P(1.i2)$                                                                                                    | @ = = = = = = = = = = = = = = = = = = =   |  |
| $A_{3} = P(1.12)(1.12^{2} + 1.12 + 1)$ $A_{20} = P(1.12)(1.12^{19} + 1.12^{18} + + 1.12 + 1)$ $1000 000 = P(1.12)(1(1.12^{20} - 1))$ $P = \frac{10000000}{(1.12)(1.12^{20} - 1)}$                                                                                              | () () () () () () () () () () () () () (  |  |
| \$ 12 391-77                                                                                                                                                                                                                                                                   |                                           |  |

| Trial HSC Solutions 2001 Mathematics Page   |                  |              |  |
|---------------------------------------------|------------------|--------------|--|
| Solutions                                   | Marks/Comments   |              |  |
| Q8(a) (i) A=62-40c                          |                  |              |  |
| =(k+3)2-4xkx(-4)                            |                  |              |  |
| = k2+6K+9+4K                                | 1                |              |  |
| $Q = k_3 + rok + d$                         |                  |              |  |
| For weed west \$20                          |                  |              |  |
| 20 K2+10K+9 70                              |                  |              |  |
| (K+9)(K+1) ?0                               | (1)              |              |  |
| -9                                          |                  |              |  |
| 12 KE-E( or k7/-1                           | 1 (2)            |              |  |
| iv PDQF if A co and a 20                    | 1                | •            |  |
| so (k+a) (k+1) Ko and k>0                   |                  |              |  |
|                                             |                  |              |  |
| - << k < - 1 cand k > 0                     |                  |              |  |
| " as solution possible fork                 | •                |              |  |
| ". never a PDQF                             |                  | <u> </u><br> |  |
| (b) (i) d [xenx - >1] = 1. lnx +x. 1 -1     | . 1              | •            |  |
| = lax +1 -1                                 |                  |              |  |
| = lux q al.                                 | 1                |              |  |
| (ii) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \    |                  | ••••         |  |
|                                             | 1 for subst.     |              |  |
| $= e^{2}x^{2} - e^{2} - (0n(-1))$           | _                | r<br>Nivac   |  |
| $= 2e^{2} - e^{2} - (0 - 1)$ $= e^{2} + 1$  | l for evaluation | 45           |  |
| (c) y=ln Tx arod of Tang at x=e             | lfor differe     |              |  |
| dy = \frac{1}{an}                           |                  |              |  |
| 4 11.                                       | Ze ,             |              |  |
| Equ. of Tangent<br>$y-z=\overline{z}e(x-e)$ | ( for "eque"     |              |  |
| $\Rightarrow y = \frac{1}{2e} \times$       |                  |              |  |
|                                             |                  |              |  |

| Trial HSC solutions 2001 Mathematics                                                   |          |                        |  |  |
|----------------------------------------------------------------------------------------|----------|------------------------|--|--|
| Solutions                                                                              | Marks/Co | Marks/Comments         |  |  |
| (19(a) (1) Vertex = (0,0)                                                              | 1        |                        |  |  |
| (i) y2 = 4AX A=2                                                                       |          |                        |  |  |
| > focus s = (2,0)                                                                      | 1        |                        |  |  |
| (iii) Derectock sc=-2                                                                  | 1        |                        |  |  |
| (b) (i) $\log_{x} \sqrt[3]{a} = \frac{1}{3} \log_{x} a = \frac{3.6}{3}$                | t        |                        |  |  |
| (ii) log ab = log a + log b<br>= 3-6 + 2 = 5-6                                         |          |                        |  |  |
| (iii) log a = log a - log b<br>= 3.6 - 2 = 1.6                                         | -        |                        |  |  |
| (c) (i) h= kr                                                                          |          |                        |  |  |
| r+kr=1 >> 1= 1+k                                                                       | 1        |                        |  |  |
| $V = \frac{17}{3} r^2 h = \frac{17}{3} \cdot \frac{1}{(1+k)^2} \times \frac{k}{(1+k)}$ | 1        |                        |  |  |
| = II . k<br>3 (1+k) 3 op 20.                                                           |          |                        |  |  |
| (ii) dv = \frac{17}{3}[1.\frac{(1+k)^3-kx3(1+k)^2}{(1+k)^6}]                           | 1        |                        |  |  |
| $= \frac{17}{3} \times (1+k) \left[ \frac{1+k-3k}{(1+k)6} \right]$                     |          |                        |  |  |
| when $dV = 0$ when $k = \frac{1}{2}$                                                   | t        | ?                      |  |  |
| Test nature at K= 2                                                                    |          | •                      |  |  |
|                                                                                        | •        | ustifying<br>1 Vis mas |  |  |
| (iii) Vmax = 1 . 1 = 4tt (1+1) 3 = 4tt                                                 | ı        |                        |  |  |

| Trial HSC solutions 2001 Mathematics Poge 45-14-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks/Comments                        |  |
| $O(o(a))  y = 2 \sin x - 1$ $\frac{1}{30^{\circ}}  \frac{1}{40^{\circ}}  \frac{1}{100^{\circ}}  \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 for concavity  1 for 30°;  and 150° |  |
| (b) (i) $F = t + 1.2^t$<br>when $t = 1$ $F = 1 + 1.2^t = 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                     |  |
| $(ii)  L_2 = F_1 + F_2$ $= (+(-2 + 2 + (-2)^2))$ $= 3 + (-2 + (-2)^2)$ $= 5 - 64  \text{ay end}$ $= 5 - 64  \text{ay end}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |
| (iii) Lu= F(+F2+F3++FN<br>=[(+1.2]+[2+1.32]+[3+1.23]<br>++[n+1.2n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |  |
| $= C(+2+3++n) + c^{2}$ $= (1+2+3++n) + c^{2}$ $= (1+2+3++n)$ $= $ | 1 G.Sevied                            |  |
| (iv) from 6 cent to 4pm $n=11$ so $L_{11} = \frac{11}{2}(1+11) + 1.2(1.2"-1)$ $= 11\times6 + 6(1.2"-1)$ $= 104-6 let co (12p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |
| (c) Lef AC = ( unit<br>( DB = JZ<br>2. as LCHB = 45° (= LCBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lerget to 12                          |  |
| >>> LOCA = 45° (AHLS equal as OCI)<br>>>>>> LOCB = 135°<br>3. Sina = 5.135° = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AB)  1 yelling to 135°                |  |

10 = 30° = LBDC Ļ 13.

@ 10(c)



let AC = a

$$\frac{1}{\alpha} = \frac{1}{2\alpha} = \frac{1}{2\alpha}$$